Traditional Feature Detectors and Trackers use information aggregation in 2D patches to detect and match discriminative patches. However, this information does not remain the same at object boundaries when there is object motion against a significantly varying background. In this paper, we propose a new approach for feature detection, tracking and re-detection that gives significantly improved results at the object boundaries. We utilize level lines or iso-intensity curves that often remain stable and can be reliably
detected even at the object boundaries, which they often trace.
Stable portions of long level lines are detected and points of high curvature are detected on such curves for corner detection.
Further, this level line
is used to separate the portions belonging to the two objects, which is then used for robust matching of such points. While such CoMaL (Corners on
Maximally-stable Level Line Segments) points were found to be much more reliable at the object boundary
regions, they perform
comparably at the interior regions as well. This is illustrated in exhaustive experiments
on real-world datasets.
Future work includes application to other problems
where our approach might be useful, such as tracking, SfM in video sequences and stereo.
Some results using our features to track the cars in the KITTI dataset are shown below along
with results from the Kanade-Lucas-Tomasi (KLT) tracker [9].
References
[1] G. Zhang, and Z. Dong, J. Jia et al. Efficient non-consecutive feature tracking for structure-from-motion. In ECCV 2010.
[2] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions.
In BMVC, 2002.
[3] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference, 1988.
[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI dataset. In The International Journal of Robotics Research, 2013.
[5] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. In IJCV, 2004.
[6] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. In IJCV 2004.
[7] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In ECCV 2006.
[8] J. Byrne and J. Shi. Nested shape descriptors. In ICCV 2013.
[9] B. Lucas, T Kanade et al. An iterative image registration technique with an application to stereo vision. In IJCAI 1981.